weekly
or for 10 classes
Introducción a la IA y al aprendizaje automático | Clase de programación en Python e IA, nivel 1
Completado por 48 alumnos
Edades 11-16
Curso grupal en vivo
Videoconferencias en vivo
1 x por semana, 10 semanas
6-14 alumnos por clase
60 min
Qué está incluido
10 reuniones en vivo
10 horas presencialesTarea
1-2 horas por semana. There will be review questions and practice assignments each week, taking approx. 1 to 2 hours. Learners are also strongly encouraged to learn on their own outside of class time. Students will also have an optional final project introduced in week 7 of the class and presented during a optional 3 to 5-minute presentation.Evaluación
All the learners in the last 3 weeks can work on their own machine learning project and complete a optional 3 to 5-minute presentation to the class. Learners will receive feedback from the instructor and other learners for project.Certificado de finalización
Students will receive a certificate of completion at the end of the class that is fully verifiable online. Students must attend at least 8 classes to receive the certificate.Experiencia de clase
Nivel de inglés - B2+
Grado de EE. UU. 6 - 9
Nivel Beginner
This introduction to artificial intelligence and machine learning allows learners to start exploring the foundations of these exciting fields. Learners will complete 4 projects using Python code and the same machine learning tools used by professionals in the field. Students will complete real 4 machine learning projects utilizing a decision tree, linear regression, nearest neighbors, and a neural network. Learners will learn the steps of successful machine learning projects. These steps include data collection, data preparation, model training, accuracy determination, and model improvement. All students in the last 3 weeks are encouraged to work on their own machine learning project and complete an optional 5-minute presentation to the class. **** Please, review the coding prerequisites listed at the end of this description or in the parental guidance section. This is a coding-class using real code and the same tools used by professional AI and Machine Learning engineers. **** What Learners will Create Jump into four hands-on projects where you'll: Train an AI to distinguish between cats and dogs Analyze real scientific data from the famous Iris dataset Build a neural network that can read handwritten numbers Design and code your own unique AI project based on what interests you most Class Syllabus Week 1 What is Intelligence? What is AI? AI in Our World What is Machine Learning? Artificial Intelligence vs. Machine Learning vs. Data Science Introduction to Google Colab Week 2 Types of Machine Learning Part 1 Google Colab Introduction Python NumPy and Pandas Introduction Working with Panda Data Frames Machine Learning Project Introduction #1 - Cat or Dog Classification Week 3 Machine Learning Project #1 - Cat or Dog Classification What Problems can AI Solve? Supervised vs. Unsupervised Learning Types of Supervised Learning The Machine Learning Process Week 4 Working with Data Python Project Data Science and People NumPy Introduction Pandas Introduction Matplotlib Introduction Week 5 Data and AI Collecting and Preparing Data Ethical Issues in Data Potential problems with AI Coding Skills: A Good Coder is a Good Searcher Week 6 What is Scikit-learn? Supervised Learning Algorithm - Nearest Neighbor Machine Learning Project #2 Introduction - Iris Data Set Week 7 Machine Learning Project #2 Introduction - Iris Data Set Supervised Learning Algorithm - Decision Trees Introduction to Final Project Test and Training Data Week 8 Introduction to Neural Networks Neural Network Concepts Supervised Learning Project #3 - Classification: Handwriting Classification Using Scikit-learn with images Loss and Determining Accuracy Test and Training Data Week 9 Supervised Learning Project #3 - Classification: Handwriting Classification Loss and Determining Accuracy Review Final Project Week 10 Final Project and Presentations Student Presentation Careers in Machine Learning and AI Interactive Groups Build the Foundation of Code Skills Every learner is strongly encouraged to post questions, sample code, and their projects every step of the way. This gives students the chance to learn from each other and start practicing reading code. The instructor will also be providing feedback and guidance regularly throughout the course. ****Important Note for Adults***** This isn't a beginner coding course. Learners should already be comfortable with basic programming concepts in any language (Python, Java, JavaScript, C/C++, or Swift). If you're new to coding, check out our beginner Python courses first - they'll give you the foundation you need to succeed here.
Metas de aprendizaje
Students will develop proficiency in essential Python libraries for machine learning, including scikit-learn, NumPy, and Pandas. They will demonstrate their understanding by building and evaluating machine learning models through hands-on coding.
Students will master core types of machine learning including supervised and unsupervised learning, along with key algorithms like decision trees and neural networks. They will demonstrate this knowledge by choosing appropriate algorithms.
Programa de estudios
10 Lecciones
más de 10 semanasLección 1:
Introduction to AI and Machine Learning
Students will explore the concepts of intelligence and AI, discovering how AI is integrated into our daily lives. They'll learn the distinction between AI, Machine Learning, and Data Science, and get hands-on experience with Google Colab, a powerful tool for coding and analysis.
60 minutos de lección en vivo en línea
Lección 2:
Fundamentals of Machine Learning and Python
This session introduces different types of Machine Learning and dives into essential Python libraries like NumPy and Pandas. Students will begin their first ML project, predicting favorite music, which will give them a practical understanding of ML applications.
60 minutos de lección en vivo en línea
Lección 3:
Machine Learning Concepts and Data Visualization
Students will complete their first ML project and explore the problems AI can solve. They'll learn about supervised and unsupervised learning, key ML terminology, and the overall ML process. The day concludes with an introduction to data visualization using Matplotlib.
60 minutos de lección en vivo en línea
Lección 4:
Working with Data and Python
This day focuses on handling data in Python. Students will work with Pandas DataFrames and synthetic data, preparing them for their second ML project comparing height and weight data.
60 minutos de lección en vivo en línea
Otros detalles
Orientación para padres
Learners will use Google Colab during this class and will need a Google Account to access Colab. Students will also utilize the following Python libraries, including Scikit-learn, NumPy, Matplotlib, Seaborn, and Pandas throughout the class. The documentation (instructions) for these libraries will be used as a reference throughout the course. UC Irvine ML Repository and Kaggle datasets will be used for practice datasets throughout the class. Teachable Machine and ML Playground are low code platforms for machine learning projects. Python.org will be used as Python reference sources throughout the class.
***Intro to AI and ML Class Prerequisites ****
To succeed in this class, learners should have a strong grasp of coding fundamentals
including conditional statements, functions, loops, and arrays/lists. Learners should have completed comprehensive multi-week beginner level coding classes before starting this course. Any programming language is fine, such as Python, Java, JavaScript, C / C++, or Swift. There will be a brief review during the first few classes using Python. There are many excellent beginner Python courses available through Outschool.
Requisitos previos
This isn't a beginner coding course. Learners should already be comfortable with basic programming concepts in any language (Python, Java, JavaScript, C/C++, or Swift). If students new to coding, check out our beginner Python courses first.
Lista de útiles escolares
Students will use Google Colab during this class and will need a Google Account to access Colab. Colab is a browser-based code editor and there are no minimum hardware requirements for student computers. Students will need a reliable Windows, Mac, or Linux laptop or desktop for this class. *** Intro to AI and ML Class Prerequisites **** To succeed in this class, learners should have a strong grasp of coding fundamentals. This includes conditional statements, functions, loops, and arrays/lists. Learners should have completed comprehensive multi-week beginner level coding classes before starting this course. Any programming language is fine, such as Python, Java, JavaScript, C / C++, or Swift. There will be a brief review during the first few classes using Python. There are many excellent beginner Python courses available through Outschool.
Recursos externos
Además del aula de Outschool, esta clase utiliza:
Conoce al profesor
Experiencia y certificaciones del docente
Licenciatura desde Mount St. Mary's University
Over 5,000 students from nearly 100 countries across a variety of platforms have started coding in one of my classes. I offer classes covering the foundations of Python and AI. I am the author of the soon-to-be released book All About Python for Kids. Before teaching, I worked as a software developer for nearly 10 years. I've worked for organizations including Apple, Dell, and Best Buy. I believe the best way to learn is by doing and all my classes are based around hands-on projects that progressively build in difficulty. I'm a graduate of Mount St. Mary's University in Emmitsburg, Maryland. I can't wait to meet your learner in the class and get started soon.
Reseñas
Otras clases de David Sofield
Otras clases de David Sofield
Categorias relacionadas
A los padres también les gusta
Inteligencia artificial para niños: aprenda los conceptos básicos de la inteligencia artificial
Create n Learn: English, Coding, AI, Music, Math
4.9
(206)
por clase
Próxima sesión mañana a las 6 PM
Clase grupal
4 semanas, 2/semana, 55 min
7-12
Arte digital y escritura creativa con inteligencia artificial
Miss Haley
5.0
(45)
por sesión
Lecciones 1 a 1
Bajo demanda
9-18
Exploración de IA: Entrena un robot virtual | Aprende inteligencia artificial
Create n Learn: English, Coding, AI, Music, Math
4.9
(206)
por clase
Próxima sesión a las 2 AM el Monday
Clase grupal
1 semana, 1/semana, 55 min
7-12
101 Privado - Nivel Principiante 1 - Inteligencia Artificial (IA) - 30 Minutos Semanales
StudentScholars
3.9
(86)
por sesión
Lecciones 1 a 1
Bajo demanda
8-18
Inteligencia artificial 101 de 2 días: IA como CHATGPT impartida por un científico informático
Explosive Learning Jo Reynolds Life Skill Teachers
4.8
(1,288)
por clase
Próxima sesión a las 2 PM el Thursday
Clase grupal
1 semana, 2/semana, 50 min
9-14
Taller de creatividad con arte con inteligencia artificial: crea imágenes asombrosas con inteligencia artificial
Mark Richard Mazzu a.ka. "Mister Mark"
4.8
(473)
por clase
Próxima sesión a las 4 PM el Fri 3/7
Clase grupal
1 semana, 1/semana, 40 min
7-11
Proyectos de inteligencia artificial con codificación Scratch (nivel 1)
AI Code Academy
4.7
(1,767)
por clase
Próxima sesión mañana a las 12:30 AM
Clase grupal
10 semanas, 1/semana, 1 hora
11-16
Software de inteligencia artificial: guía para niños
Daniel Solomon Kaplan
4.9
(396)
por clase
Clase grupal
4 semanas, 1/semana, 30 min
8-12
Python e IA para principiantes: aprenda, cree y explore proyectos de IA
Faruk Hasan
4.8
(145)
por clase
Próxima sesión a las 11:35 PM el Tue 3/25
Clase grupal
24 semanas, 1/semana, 35 min
12-15
Software de inteligencia artificial: guía para adolescentes
Daniel Solomon Kaplan
4.9
(396)
por clase
Próxima sesión a las 8 PM el Fri 2/28
Clase grupal
4 semanas, 1/semana, 50 min
13-18
* IA para estudiantes de secundaria
Brandy Dahlen Yun and BE Education
4.9
(634)
por clase
Próxima sesión a las 3 PM el Sat 5/31
Clase grupal
4 semanas, 1/semana, 45 min
13-18
AI Club: Cómo utilizar ChatGPT y otras herramientas de IA de forma eficaz y responsable
Dr. Nathan
5.0
(23)
por clase
Próxima sesión mañana a las 5 PM
Clase grupal
1/semana, 45 min
8-13
Introducción a la IA y al aprendizaje automático | Clase de programación en Python e IA, nivel 1
David Sofield
4.9
(815)
por clase
Próxima sesión a las 4:15 PM el Fri 3/21
Clase grupal
10 semanas, 1/semana, 1 hora
11-16
Construyamos un ChatBot de IA
Guido
5.0
(9)
por clase
Próxima sesión a las 10 PM el Sunday
Clase grupal
1 semana, 1/semana, 1.50 hora
13-18
Extravagancia de escape de IA del Día de los Inocentes, apta para ESL
Teacher Sharon, M.Ed., TEFL
4.9
(925)
por clase
Próxima sesión a las 6 PM el Mon 3/10
Clase grupal
1 semana, 1/semana, 35 min
5-9
Laboratorio de aprendizaje automático: Introducción a la IA para niños
Ms. Sara (STEM Apprentice Academy)
5.0
(571)
por clase
Clase grupal
12 semanas, 1/semana, 45 min
9-11
Más para explorar
Clases de flauta
Hamburguesa
Fotografía nocturna
Química Beth
Tomando notas como un profesional
Academia de Nutrición Feliz
Cómo escribir en cursiva
Los conceptos básicos de matemáticas hacen más que sobrevivir
Inferencia
Leer evaluación
Vamos a aprender y practicar
Serie de conferencias de psicología de nivel avanzado AP AP
Poniéndose rojo
Escribe todos los días
Codificación de juegos en 3D
Criaturas
Sala de escape entre nosotros
Corte Suprema
Cursos académicos
Matemáticas Eureka