US$259
for 10 classes包含什麼
10 現場會議
12 小時 30 分鐘 上課時間項目
每週 2-4 小時. Projects are not mandatory but we strongly encourage students to complete them.評估
包括我們無法翻譯此文,請刷新頁面並再試一次。
課堂經歷
This comprehensive Machine Learning Fundamentals course covers essential concepts and practical applications across ten structured lessons. Beginning with an introduction to TensorFlow and basic machine learning principles, students progress through topics such as linear regression, model tuning strategies, K-NN clustering, decision forests, and neural networks, including feed-forward networks and convolutional neural networks (CNNs). Each lesson incorporates hands-on projects using datasets like MNIST and CIFAR10, where students implement algorithms, tune models for optimal performance, and visualize results. The course culminates in a final project phase where participants develop and present their own machine learning applications, exploring diverse topics from image classification to model ensembling and hyperparameter optimization. For a week to week program, check out the syllabus.
學習目標
This Machine Learning Fundamentals course covers TensorFlow introduction, basic principles, linear regression, model tuning, K-NN clustering, decision forests, and neural networks like CNNs.
Through hands-on projects with MNIST and CIFAR10 datasets, students implement algorithms, optimize models, and present final projects on topics including image classification and hyperparameter optimization.
教學大綱
10 課程
超過 2 週課 1:
Intro To TensorFlow
Objectives:
Learn the basics of machine learning
What is learning?
History of machine learning
Regression vs classification
Introduce TensorFlow
Installing TensorFlow
What is a Tensor?
Low-level API and high-level API
How do Tensors perform computations?
Tensorflow variables
Project 1: Perform basic computations with TensorFlow
Matrix addition, matrix multiplication using tensors in TensorFlow
75 分鐘線上直播課
課 2:
Linear Regression
This project aims to teach linear regression fundamentals, including hypothesis setup with the equation 𝑦 = 𝑚 𝑥 + 𝑏 y=mx+b, where 𝑚 m represents weights and 𝑏 b denotes biases. Participants will learn to compute these parameters using gradient descent and understand the mean squared error cost function. Using TensorFlow and NumPy, they will implement a linear regression model, iteratively refining weights and biases over multiple epochs and visualizing model performance.
75 分鐘線上直播課
課 3:
Model Tuning
Objectives
Why do we need to tune models?
Convergence problems
Preparation
Strategies for tuning models
Grid Search
Random Search
Data transformation
Project 3: Tune the linear regression model to produce better results
Implement Grid Search
Implement Random Search
Implement a data transformation
75 分鐘線上直播課
課 4:
K-NN Clustering
Objectives:
How do we solve classification problems?
Problems with classification
Strategies and models to use
K-NN Algorithms
How do clustering algorithms work?
How does the K-NN algorithm perform classification
How do we measure distance?
What is the effect of the K hyperparameter?
Project 4: MNIST Classification with K-NN
Import the dataset and process it
Implement the K-NN algorithm
Visualize the results
Tune the model for better results
75 分鐘線上直播課
其他詳情
外部資源
學習者無需使用標準 Outschool 工具以外的任何應用程式或網站。
提供自
教師專業知識和證書
**USE PROMO CODE: CODEAINEWYEAR2025 FOR $25 OFF ANY 10 WEEK COURSE - Valid until Feb 15**
~We offer early registration, sibling discounts, and multi-course bundles. ~
~Check out our complete Outschool offering here: https://shorturl.at/bcBGP ~
~Get to know our coaches here: https://tinyurl.com/5j5crx59 ~
At AI Code Academy, we specialize in project-based STEM coding, AI, and mathematics programs for young learners. We are one of the few organizations that offer AI and machine learning courses tailored for kids. Our comprehensive curriculum spans from basic computer skills and Scratch coding to more advanced Python, Java, web design, game development, and AI machine learning projects.
Our unique focus is on introducing students to AI early, helping them grasp complex concepts like machine learning, data analysis, and smart devices, while also reinforcing mathematics skills, essential for their success in STEM fields.
With a team of passionate instructors—college students and recent graduates with degrees in Engineering and Computer Science—we provide hands-on, real-world projects that prepare students for future careers in AI, coding, robotics, and mathematics.
Get to know our coaches here: https://tinyurl.com/5j5crx59
評論
AI Code Academy的其他課程
AI Code Academy的其他課程
其他家長也喜歡
關於中級 3 級 Python 編碼的所有內容 | Python編碼編碼類
David Sofield
4.9
(815)
US$33 每班
下次會議在 10:30 PM Sun 3/9
團體課
10 週, 1/週, 1 小時
11-16
Python 編碼 4 兒童(簡介)
Dr. Elliott Heflin, Jr.
4.6
(405)
US$19 每班
下次會議在 8 PM Monday
團體課
2 週, 5/週, 55 分鐘
8-13
關於 Python 編碼 1 級的一切 |青少年即時 Python 程式設計課程
David Sofield
4.9
(815)
US$22 每班
下次會議在 4 PM Fri 3/7
團體課
8 週, 1/週, 1 小時
11-16
1:1 私人輔導 Python 編碼 - Python 程式設計簡介
Ziad Ghazi
4.5
(8)
US$55 每堂課
一對一課程
依需求開班
7-18
初學者 1 對 1 Python 編碼教練(輔導)
Bojan Milinic
5.0
(7)
US$65 每堂課
一對一課程
依需求開班
8-18
進階 Python 編碼 4 兒童
Dr. Elliott Heflin, Jr.
4.6
(405)
US$19 每班
下次會議在 9 PM Monday
團體課
2 週, 5/週, 55 分鐘
10-15
一對一 - Python 編碼課程
Geetu sodhi
5.0
(18)
US$40 每堂課
一對一課程
依需求開班
9-14
關於 Python 程式設計的一切 | Python 程式設計初學者夏令營 I 級
David Sofield
4.9
(815)
US$22 每班
下次會議在 4:15 PM Mon 6/16
團體課
2 週, 4/週, 1 小時
11-15
Python 程式設計遊戲 4 兒童(簡介)
Dr. Elliott Heflin, Jr.
4.6
(405)
US$19 每班
下次會議在 12 AM Tuesday
團體課
2 週, 5/週, 55 分鐘
8-13
基於 Python 3 級專案 |生動有趣的 Python 編碼
QuattronKids
4.9
(182)
US$15 每班
團體課
10 週, 1/週, 1 小時
9-13
適合初學者的 Python 編碼:學習程式設計基礎知識
Create n Learn: English, Coding, AI, Music, Math
4.9
(221)
US$20 每班
團體課
8 週, 1/週, 55 分鐘
11-14
為初學者解鎖 Python 編碼 I - 為期兩週的電腦駭客兒童訓練營
Coding Doctors Learning Lab, Inc.
4.8
(1,242)
US$15 每班
下次會議在 4 PM Monday
團體課
2 週, 5/週, 55 分鐘
10-15
以專案為基礎的兒童 Python 編碼(2 級)
AI Code Academy
4.7
(1,767)
US$22 每班
下次會議在 12:30 AM Tuesday
團體課
10 週, 1/週, 1 小時
10-15
關於 Python 程式設計 2 級的一切 |基於專案的Python編碼課程
David Sofield
4.9
(815)
US$32 每班
下次會議在 9:15 PM Sun 3/23
團體課
10 週, 1/週, 1 小時
11-16
以專案為基礎的兒童 Python 編碼(級別 3)
AI Code Academy
4.7
(1,767)
US$23 每班
下次會議在 12:30 AM Thu 3/6
團體課
10 週, 1/週, 1 小時
11-16
高中以專案為基礎的 Python 編碼(級別 1)
AI Code Academy
4.7
(1,767)
US$22 每班
下次會議在 12:30 AM Saturday
團體課
10 週, 1/週, 1 小時
13-17