Outschool
Abrir configuración de moneda, zona horaria e idioma
Iniciar sesión

Campamento de verano: Algoritmos de aprendizaje automático con Tensorflow (Python nivel 5)

En este curso, enseñamos a los estudiantes a usar TensorFlow y aprendemos las funciones para crear proyectos de aprendizaje automático, y analizamos modelos y los errores que cometen para iterar sobre un modelo y mejorarlo. Se requieren habilidades y experiencia en codificación con Python.
AI Code Academy
Puntuación media:
4.7
Número de reseñas:
(1,763)
Popular
Clase

Qué está incluido

10 reuniones en vivo
12 horas 30 minutos horas presenciales
Proyectos
2-4 horas por semana. Projects are not mandatory but we strongly encourage students to complete them.
Evaluación
incluido

Experiencia de clase

This comprehensive Machine Learning Fundamentals course covers essential concepts and practical applications across ten structured lessons. Beginning with an introduction to TensorFlow and basic machine learning principles, students progress through topics such as linear regression, model tuning strategies, K-NN clustering, decision forests, and neural networks, including feed-forward networks and convolutional neural networks (CNNs). Each lesson incorporates hands-on projects using datasets like MNIST and CIFAR10, where students implement algorithms, tune models for optimal performance, and visualize results. The course culminates in a final project phase where participants develop and present their own machine learning applications, exploring diverse topics from image classification to model ensembling and hyperparameter optimization.

For a week to week program, check out the syllabus.

Metas de aprendizaje

This Machine Learning Fundamentals course covers TensorFlow introduction, basic principles, linear regression, model tuning, K-NN clustering, decision forests, and neural networks like CNNs.
Through hands-on projects with MNIST and CIFAR10 datasets, students implement algorithms, optimize models, and present final projects on topics including image classification and hyperparameter optimization.
objetivo de aprendizaje

Programa de estudios

10 Lecciones
más de 2 semanas
Lección 1:
Intro To TensorFlow
 Objectives:
Learn the basics of machine learning
What is learning?
History of machine learning
Regression vs classification
Introduce TensorFlow
Installing TensorFlow
What is a Tensor?
Low-level API and high-level API
How do Tensors perform computations?
Tensorflow variables
Project 1: Perform basic computations with TensorFlow
Matrix addition, matrix multiplication using tensors in TensorFlow 
75 minutos de lección en vivo en línea
Lección 2:
Linear Regression
 This project aims to teach linear regression fundamentals, including hypothesis setup with the equation 𝑦 = 𝑚 𝑥 + 𝑏 y=mx+b, where 𝑚 m represents weights and 𝑏 b denotes biases. Participants will learn to compute these parameters using gradient descent and understand the mean squared error cost function. Using TensorFlow and NumPy, they will implement a linear regression model, iteratively refining weights and biases over multiple epochs and visualizing model performance. 
75 minutos de lección en vivo en línea
Lección 3:
Model Tuning
 Objectives
Why do we need to tune models?
Convergence problems
Preparation
Strategies for tuning models
Grid Search
Random Search
Data transformation
Project 3: Tune the linear regression model to produce better results
Implement Grid Search
Implement Random Search
Implement a data transformation 
75 minutos de lección en vivo en línea
Lección 4:
K-NN Clustering
 Objectives:
How do we solve classification problems?
Problems with classification
Strategies and models to use
K-NN Algorithms
How do clustering algorithms work?
How does the K-NN algorithm perform classification
How do we measure distance?
What is the effect of the K hyperparameter?
Project 4: MNIST Classification with K-NN
Import the dataset and process it
Implement the K-NN algorithm
Visualize the results
Tune the model for better results 
75 minutos de lección en vivo en línea

Otros detalles

Recursos externos
Los estudiantes no necesitarán utilizar ninguna aplicación o sitio web más allá de las herramientas estándar de Outschool.
Se unió el April, 2020
4.7
1763reseñas
Popular
Perfil
Experiencia y certificaciones del docente
**USE PROMO CODE: CODEAINEWYEAR2025 FOR $25 OFF ANY 10 WEEK COURSE - Valid until Feb 15**
~We offer early registration, sibling discounts, and multi-course bundles. ~
~Check out our complete Outschool offering here: https://shorturl.at/bcBGP ~
~Get to know our coaches here: https://tinyurl.com/5j5crx59 ~

At AI Code Academy, we specialize in project-based STEM coding, AI, and mathematics programs for young learners. We are one of the few organizations that offer AI and machine learning courses tailored for kids. Our comprehensive curriculum spans from basic computer skills and Scratch coding to more advanced Python, Java, web design, game development, and AI machine learning projects.

Our unique focus is on introducing students to AI early, helping them grasp complex concepts like machine learning, data analysis, and smart devices, while also reinforcing mathematics skills, essential for their success in STEM fields.

With a team of passionate instructors—college students and recent graduates with degrees in Engineering and Computer Science—we provide hands-on, real-world projects that prepare students for future careers in AI, coding, robotics, and mathematics.

Get to know our coaches here: https://tinyurl.com/5j5crx59

Reseñas

Curso grupal en vivo
Compartir

259 US$

por 10 clases
5 x por semana, 2 semanas
75 min

Completado por 1 alumno
Videoconferencias en vivo
Edades: 13-18
4-8 alumnos por clase

Acerca de
Apoyo
SeguridadPrivacidadPrivacidad de CAPrivacidad del alumnoSus opciones de privacidadTérminos
Obtener la aplicación
Descargar en la App StoreDescargar en Google Play
© 2025 Outschool