English
Log In

There are no open spots for this class, but we found something similar!

Class listing photo
5.0 (1) · Ages: 11-16

High School Algebra 1 (24 Weeks) | Math | Full Course | Live Class

Class listing photo
5.0 (6) · Ages: 9-11

Advanced Math Problem Solving With Multi-Step Word Problems, Grades 4-6

Class listing photo
5.0 (2) · Ages: 11-15

Algebra 1 - That Was Easy! Semester 2 With Certified Math Teacher

Class listing photo
5.0 (45) · Ages: 11-16

Algebra 1 Full Course: Ongoing (3 Days per Week)

Class listing photo
5.0 (1) · Ages: 10-15

Conflict Resolution and Problem Solving

Class listing photo
5.0 (1) · Ages: 12-17

Algebra 2- Full Year of Math; With Professor Alfred: Ongoing Course

Algebra 1 for Accelerated Learners: Introductions to Quadratic Functions

Class
Malikai Bass M.A
Popular
Average rating:5.0Number of reviews:(272)
In this rigorous math course, learners will study quadratic functions systematically by looking at patterns, contrasting them with linear and exponential functions, recognizing them in different forms and using them to solve problems.

Class experience

US Grade 7 - 9
HSF-BF.A.1.a
Determine an explicit expression, a recursive process, or steps for calculation from a context.

HSF-BF.A.1.b
Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.

HSF-BF.A.1.c
Compose functions. For example, if is the temperature in the atmosphere as a function of height, and is the height of a weather balloon as a function of time, then is the temperature at the location of the weather balloon as a function of time.

HSF-BF.A.2
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

HSF-BF.B
Build new functions from existing functions.

HSF-LE.A
Construct and compare linear, quadratic, and exponential models and solve problems.

HSF-LE.A.1
Distinguish between situations that can be modeled with linear functions and with exponential functions.

HSF-LE.A.1.a
Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

HSF-LE.A.1.b
Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

HSF-LE.A.1.c
Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

HSF-LE.A.2
Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

HSF-LE.A.3
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

HSF-LE.A.4
For exponential models, express as a logarithm the solution and  evaluate the logarithm using technology.

HSF-LE.B
Interpret expressions for functions in terms of the situation they model.


HSF-LE.B.5
Interpret the parameters in a linear or exponential function in terms of a context.
HSA-SSE.A.1
Interpret expressions that represent a quantity in terms of its context.

HSA-SSE.A.1.a
Interpret parts of an expression, such as terms, factors, and coefficients.

HSA-SSE.A.1.b
Interpret complicated expressions by viewing one or more of their parts as a single entity.
HSA-SSE.B
Write expressions in equivalent forms to solve problems.

HSA-SSE.B.3
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
HSA-SSE.B.3.c
Use the properties of exponents to transform expressions for exponential functions.

HSA-SSE.B.3.a
Factor a quadratic expression to reveal the zeros of the function it defines.

HSA-SSE.B.3.b
Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. 


HSA-SSE.A.2
Use the structure of an expression to identify ways to rewrite it.

Professional Experience:
I have been a math tutor for over 12 years and have worked with students from ages 5-25 in small group and academic settings including serving as a primary teacher for home educated learners. I have received training and tutoring certification/awards from nationally recognized organizations. I was a group supplemental instruction leader for math at the collegiate level for four years at ETSU including working with dual enrolled and accelerated learners. I have taught and tutored math up to a graduate level in algebra, geometry, probability, and quantitative reasoning. 
Academic Experience: 
Constructivism and Mathematics, Science, and Technology Education
	This graduate level online course for educators used practical examples and empirical research to connect the educational philosophy of constructivism to best practices in STEM education and demonstrated online teaching strategies for this endeavor. It highlighted the power of solving problems through building and applying understandings rather than rote processes which influences the problem-centered curriculum This class also addressed common misconceptions or alternative schemas students develop for math and science prior to instruction and provided ideas for experiments and explorations to adjust these conceptions. 
Math 1410 Numbers, Concepts, and Algebra for Math Teachers
      This in-person semester long coursed prepared students to teach common core mathematics to students in grades kindergarten through eight including early access to algebra. It included practical teaching experience, ensuring the personal math conceptual fluency of each educator, and demonstrating expertise on the Praxis math exam for educators. 
Math 1420: Logic, Problems, and Geometry for Math Teachers
      This in-person semester long course prepared teacher candidates to teach common core mathematics to students in grades kindergarten through eighth including advanced ideas of logic, problem solving, and geometry using a constructivist lens. 


Homework Offered
Students will complete one mathematical modeling projects.
Assessments Offered
Students will receive regular written feedback.
Grades Offered
Learners will need standard notetaking supplies. A teacher provided printable guided note-taking workbook will be provided. 
In addition to the Outschool classroom, this class uses:
Students will need to use Nearpod. They will need to click a link and enter their first name or initial. No other identifying information will be collected. 
The scope and sequence of this course is based on the open source Illustrative Mathematics curriculum and has been adapted for 2e, neurodiverse, and home-based learners. Illustrated Mathematics is licensed under a creative commons attribution license: https://creativecommons.org/licenses/by/4.0/
Pedagological Resources:
Gravemeijer, K. (2020). A socio-constructivist elaboration of realistic mathematics education. In National reflections on the Netherlands didactics of mathematics (pp. 217-233). Springer, Cham.
Vintere, A. (2018). A constructivist approach to the teaching of mathematics to boost competences needed for sustainable development. Rural Sustainability Research, 39(334), 1-7.
Briscoe, L., & Van Kesteren, J. (2018). THE ART OF MATH. Gazette-Ontario Association for Mathematics, 57(2), 21-24.
Popular
Average rating:5.0Number of reviews:(272)
Profile
Hello, I have thirteen years of experience in education. As an eclectic academic learner, I had lots of opportunities to benefit others with my unique understanding and gifted perspective as a twice exceptional learner. I hold a master’s degree in... 
Group Class

$300

for 20 classes
5x per week, 4 weeks
50 min

Completed by 6 learners
Live video meetings
Ages: 11-14
3-6 learners per class

About
Support
SafetyPrivacyCA PrivacyLearner PrivacyTerms
Outschool International
Get The App
Download on the App StoreGet it on Google Play
© 2024 Outschool